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ABSTRACT 

Background: Alternative polyadenylation (APA) causes shortening or lengthening of the 3ʹ-

untranslated region (3ʹ-UTR) of genes (APA genes) in diverse cellular processes such as cell 

proliferation and differentiation. To identify cell-type-specific APA genes in scRNA-Seq data, 

current bioinformatic methods have several limitations. First, they assume certain read coverage 

shapes in the scRNA-Seq data, which can be violated in multiple APA genes. Second, their 

identification is limited between two cell types and not directly applicable to the data of multiple 

cell types. Third, they do not control undesired source of variance that potentially introduces 

noise to the cell-type-specific identification of APA genes. Findings: We developed a 

combination of a computational change-point algorithm and a statistical model, single-cell Multi-

group identification of APA (scMAPA). To avoid the assumptions on the read coverage shape, 

scMAPA formulates a change-point problem after transforming the 3ʹ biased scRNA-Seq data to 

represent the full-length 3ʹUTR signal. To identify cell-type-specific APA genes while adjusting 

for undesired source of variation, scMAPA models APA isoforms in consideration of the cell 

types and the undesired source. In our novel simulation data and human peripheral blood 

monocellular data, scMAPA outperforms existing methods in sensitivity, robustness, and 

stability. In mouse brain data consisting of multiple cell types sampled from multiple regions, 
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scMAPA identifies cell-type-specific APA genes, elucidating novel roles of APA for dividing 

immune cells and differentiated neuron cells and in multiple brain disorders. Conclusions: 

scMAPA elucidates the cell-type-specific function of APA events and sheds novel insights into 

the functional roles of APA events in complex tissues. 

Keywords: post-transcriptional regulation, alternative polyadenylation, single-cell RNA, cell-

type-specific regulation, confounding factors 

 

 

BACKGROUND 

Many mammalian messenger RNAs contain multiple polyadenylation (pA) sites, e.g., proximal 

and distal, in their 3ʹ-untranslated region (3ʹ-UTR) [1], [2]. Using multiple pA sites in each gene, 

alternative polyadenylation (APA) post-transcriptionally produces multiple APA isoforms with 

various 3ʹ-UTR lengths. These APA events are involved in diverse cellular processes such as cell 

proliferation and differentiation in particular cell types. For example, cancer cells of diverse 

types are reported to undergo widespread 3ʹUTR shortening events [3], whereas senescent cells 

tend to show widespread 3ʹUTR lengthening events [4]. To identify such APA genes for each 

cell type (cell-type-specific APA genes) in complex tissues, developing a computational method 

that accurately analyzes single-cell RNA sequencing (scRNA-Seq) data is essential since the data 

presents the cell-type-specific transcriptome.  

To identify cell-type-specific APA genes in scRNA-Seq data, several bioinformatic 

methods have been developed, such as scDAPA[5], Sierra [6], and scAPA [7]. Although they 

have various strengths, they also have several limitations to be used for complex tissue data. 
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First, they only consider certain read coverage shapes in the input scRNA-Seq data to estimate 

APA events. This is because several scRNA-Seq techniques generate the 3ʹ enriched reads and 

the accumulation of the reads that originate from the same APA isoform forms a peak. To 

identify the signal part of the peak from noise, the existing methods assume certain signal shapes 

in their peak calling. For example, scAPA utilizes findPeaks module in Homer package [8] with 

the preset peak size and height. However, these assumptions can be violated in multiple genes 

across multiple cell types. For example, one would be interested in quantifying APA isoforms of 

FLT3 and GATA2 in the scRNA-Seq data on Peripheral Blood Monocellular Cells (PBMC) of a 

healthy donor (10k in https://www.10xgenomics.com/) since their abnormality may lead to blood 

disorders [9], [10]. However, their 3ʹ tags form peaks with different sizes and heights across 

various cell types (Fig. 1A, C) that the existing methods would not be able to identify peaks 

from some of the cell types. Second, the existing methods cannot identify cell-type-specific APA 

genes when the scRNA-Seq data contains more than two cell types, which is typical for complex 

tissues. scDAPA and Sierra are only able to compare cell types in a pairwise fashion, which 

limits their ability for global comparison when more than two cell types exist. While scAPA is 

the only method to identify APA genes for multiple cell types, it identifies genes in which the 

APA isoform ratio (the ratio of long and short 3ʹ-UTR isoforms) varies across the cell types and 

does not further identify which specific cell types drive this variation. Third, the existing 

methods do not adjust for other factors that affect the scRNA-Seq data across cell types. For 

example, when the scRNA-Seq data are sampled from various brain regions, some cell types 

reside in multiple brain regions [11]. Then, molecular dynamics specific to the brain regions 

would affect different portion of the residing cell types, introducing noise to the cell-type-

specific identification of APA genes. Thus, to identify cell-type-specific APA genes, one may 

https://www.10xgenomics.com/
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need to adjust for the brain region information. Fourth, there is no simulation platform to 

compare statistical power and specificity of the methods identifying APA genes in scRNA-Seq 

data. Although such a platform is necessary to evaluate the methods with the ground truth, it has 

been challenging to simulate APA and non-APA genes since it is not clear how the read 

coverage shapes differ between APA and non-APA genes.  

To address these limitations, we developed a combination of a computational 

optimization algorithm and a statistical model, single-cell Multi-group identification of APA 

(scMAPA). To address the first limitation and quantify APA isoforms without assumptions on 

the read coverage shape, scMAPA first transforms the input scRNA-Seq data and then 

formulates a change-point detection problem on the transformed data. First, scMAPA transforms 

the 3ʹ-enriched signal of scRNA-Seq data to represent the full-length 3ʹUTR signal. For FLT3 

and GATA2 in the PBMC of a healthy donor, this transformation makes the APA short and long 

isoforms readily distinguishable across all cell types regardless of the differences in read 

coverage shape (Fig. 1B, D). Then, on the transformed coverage shapes, scMAPA quantifies 

APA isoforms by detecting a change-point. To address the second and the third limitations to 

identify cell-type-specific APA genes while controlling undesired source of variation, scMAPA 

considers cell type information and the undesired source by developing a statistical model with 

them as covariates. To address the fourth limitation and simulate APA genes, we identified a 

common feature of APA genes in real data, a high variance in the APA isoform ratios across cell 

types and simulate the APA isoform specific count matrix based on the common feature. Since 

this simulation platform does not generate data at the level of read coverage shape, it can 

generate the ground truth APA genes without having to resolve the difference between APA and 

non-APA genes in the read coverage shape. By systematically addressing these limitations, 
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scMAPA accurately and robustly identifies cell-type-specific APA genes and facilitates a 

systematic understanding of APA regulation in complex tissues in this manuscript.  

 

FINDINGS 

Single-cell multi-group identification of alternative polyadenylation (scMAPA) 

To identify cell-type-specific APA genes accurately and robustly, scMAPA combines a 

computational algorithm and a statistical model in three steps. First, scMAPA transforms each 

read in the scRNA-Seq data by padding it from the annotated 3'UTR start site to where the read 

ends (step 1 in Fig. 1E). While the scRNA-Seq reads are usually 3' biased due to the 3ʹ selection 

and enrichment techniques in the library construction step, the transformed reads will represent 

the read coverage shape across the 3'UTRs. Second, scMAPA identifies a pA site that minimizes 

the difference between the expected coverage shape of the inferred APA isoforms and the 

accumulated observed coverage (change-point, step 2 in Fig. 1E). Since the difference can be 

calculated by a quadratic function, scMAPA detects the change-point by quadratic 

programming[12]. To solve this problem for multiple cell types in scRNA-Seq data, scMAPA 

extends multiple modules of DaPars2 [13], which uses the quadratic programming approach to 

identify APA genes in bulk RNA-Seq data. Third, to simultaneously identify APA genes across 

cell types and for each cell type based on the APA isoforms quantified, scMAPA develops a 

multinomial regression model that explicitly models each APA isoform (step 3 in Fig. 1E) with 

covariates representing the cell type and other source of variation (step 4 in Fig. 1E). On the 

model, scMAPA uses the log-likelihood test and the Wald test to identify across-cell-type APA 

genes and cell-type-specific APA genes, respectively. Altogether, scMAPA is the first method to 
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simultaneously identify across-cell-type and cell-type-specific APA genes in scRNA-Seq data of 

multiple cell types.  

 

scMAPA outperforms the other method in sensitivity for the multi-group setting  

To assess the performance of scMAPA using the ground truth, we developed a novel simulation 

platform where APA isoform-specific expressions are simulated in multiple steps. First, to learn 

parameters from real data, we determined APA genes across five cell types of a mouse brain 

scRNA-Seq data [11] (neurons, astrocytes, immune cells, oligodendrocytes, and vascular, step 0 

in Fig. 2A) as those identified by both scAPA and scMAPA. We used only scAPA and scMAPA 

since they are the only methods designed for more than two cell types. Then, we quantified a 

common feature of the APA genes by calculating the proportion of the long and short isoforms in 

each cell type and the standard deviation of the proportions across the five cell types (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝, 

see Methods). To validate the effectiveness of this measure for APA simulation, we calculated 

𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for non-APA genes that scAPA and scMAPA agreed on in the data. We found 

that 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values significantly distinguish APA genes from non-APA genes (0.127 vs. 0.009 

of 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 on average, p-value<10-16, S. Fig. 2A), suggesting that it is reasonable to simulate 

APA genes to have high 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values in the data of multiple (≥2) cell types (multi-group 

setting).  

To simulate APA long and short isoform expressions, we simulated gene expression 

values for 5 simulated cell clusters (step 3 in Fig. 2A) and divided the values into APA long and 

short isoforms based on the 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values. Since the 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values are the standard 

deviation of APA long and short isoform ratios, the simulation based on the high 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 
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values estimated from the APA genes spreads the APA long and short isoform expressions 

across the 5 cell clusters. In the same sense, the simulation based on the low 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values 

produces a less variable isoform expressions across the clusters. On the simulated APA isoform 

expressions for APA and non-APA genes, we ran scMAPA and scAPA to assess their sensitivity 

and specificity. In the first scenario simulating 500 APA and 4,500 non-APA genes, we varied 

𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝  values for APA genes in the range observed in the mouse brain data (0.06 to 0.18, S. 

Fig. 2A). Across all simulated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝  values, scMAPA consistently outperforms scAPA with 

higher sensitivity (Fig. 2B) while having a similar specificity (Fig. 2C). In assessing specificity, 

we did not vary 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for non-APA genes, since the mouse brain data show a narrow 

range of 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for non-APA genes (S. Fig. 2A). In the second scenario, we varied the 

number of APA and non-APA genes and the cell group size while fixing the 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for 

APA and non-APA genes (to 0.127 and 0.009, respectively). With various numbers of true APA 

genes (250, 500, and 1,000), scMAPA consistently outperforms scAPA in terms of sensitivity 

(Fig. 2D and S. Fig. 2B, D) with a slight loss of specificity (Fig. 2E and S. Fig. 2C, E, F). To 

sum, scMAPA outperforms scAPA in various simulation scenarios in terms of sensitivity with a 

similar level of specificity. 

 

scMAPA outperforms existing methods in identifying APA isoforms with high robustness 

To assess the performance of scMAPA using real data, we used three PBMC data sets of various 

numbers of cells (1k, 5k, and 10k data representing the number of cells) from 10x Genomics 

website (see Methods, S. Table 1). To assess the accuracy of scMAPA in identifying annotated 

pA sites, we identified pA sites in the 10k and 5k data using scMAPA, scAPA, and Sierra. 
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scDAPA was not included in this comparison, because it does not return results that are 

compatible for the comparison, such as pA peaks, sites, or intervals. Among the identified pA 

sites, we calculated the proportion of them that are close to the annotated pA sites in PolyASite 

2.0[14] (see Methods). scMAPA consistently outperforms the other methods by identifying the 

highest proportion of the annotated pA sites across all degrees of proximity (Fig. 3A, S. Fig. 3A, 

B). This result suggests the outperformance of scMAPA in identifying possible bona fide APA 

events originated from the annotated pA sites.  

We further evaluated the robustness of the methods in two ways. First, we ran scMAPA, 

scAPA, scDAPA, and Sierra to identify APA genes in the 1k, 5k, and 10k PBMC data. Since the 

1k, 5k, and 10k data sets comprise similar sets of cell types from healthy adults (1k and 10k from 

the same donor and 5k from another healthy donor, S. Table 1), the APA genes are expected to 

overlap across the data sets. Thus, a high percentage of APA genes identified commonly across 

the data sets would indicate the robustness of the methods to the number of cells in the data. 

Although Sierra and scDAPA cannot identify APA genes directly from multiple (>2) cell types, 

we artificially identified the APA genes for multiple cell types by combining all pairwise 

identifications after FDR control (see Methods). Compared to the competing methods, scMAPA 

identifies a two-fold higher percentage of APA genes commonly across the 3 types of the data 

sets (40.7% vs. 18.9%, 11.6%, and 18.6% respectively, Fig. 3B), showing that scMAPA 

identifies APA genes robustly to the number of cells in the data. Second, from the 10k data 

comprising the total of 13 cell types, we randomly sampled various numbers of cell types (5, 7, 

9, and 11) and ran scMAPA and scAPA separately in each sample. For direct comparison, we 

compared scMAPA only with scAPA, the only other method that can directly handle the multi-

group setting. In the APA genes identified in each sample (sample APA genes), we calculated 
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the overlap with those identified using all the 13 cell types (total APA genes). Then, we 

calculated APA agreement ratio, defined as the number of the overlap between the sample and 

total APA genes normalized by the number of total APA genes. In all the numbers of cell types 

sampled, scMAPA outperforms scAPA with higher APA agreement ratios (Fig. 3C). Since the 

APA agreement ratio indicates the number of the total APA genes that are found in the sample 

APA genes, the result shows that scMAPA identifies APA genes robustly to the number of cell 

types in the data.  

Further, to investigate if the APA genes identified by scMAPA are biologically relevant, 

we performed Ingenuity Pathway Analysis (IPA) on 3,574 APA genes that scMAPA identified in 

the 10k PBMC data. Especially, to accurately investigate the APA genes’ roles in PBMC 

biology, we set the 18,804 genes expressed in the data as the background (see Methods). This 

IPA analysis shows significant (Benjamini-Houchberg (B-H) p-value < 0.01) enrichments to 32 

IPA terms that are characterized with keywords “blood” and “hematology” (Fig. 3D), suggesting 

that the APA genes identified by scMAPA can play important roles in PBMC biology.  

To examine the unique contribution of scMAPA in characterizing the function of APA 

genes for PBMC biology, we manually inspected 1,432 APA genes that are identified only by 

scMAPA, not by other methods (scMAPA-unique APA genes, S. Table 2). In the scMAPA-

unique APA genes, we found clear changes in the APA isoform ratios across the cell types and 

great potential to function for PBMC biology. For example, FLT3 and GATA2 are included in 

the scMAPA-unique APA genes and show the dynamic APA isoform ratios across the cell types 

especially after the data transformation step of scMAPA (Fig. 1B, D). Interestingly, GATA2 is 

an APA gene in the scRNA-Seq data of bone marrow mononuclear cells from acute myeloid 

leukemia patients [15]. Since hematopoietic stem and progenitor cells (HSPC in Fig. 1D) are 
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originated from bone marrow[16], we speculate that the molecular mechanisms rendering the 

APA event on GATA2 in the bone marrow mononuclear cells cause GATA2 to show different 

APA patterns than other cells in the PBMC. Together, scMAPA enables accurate and robust 

identification of biologically relevant APA genes in the PBMC scRNA-Seq data.  

 

scMAPA estimates APA effect size and identifies APA genes across multiple cell types  

Compared to other methods, scMAPA is the only method that can estimate the effect size and the 

significance of APA events for each cell type in the multi-group setting (see Methods). To 

demonstrate how the APA effect size enables us to understand the post-transcriptional regulation 

in each cell type, we analyzed the mouse brain scRNA-Seq data comprising five major cell 

types: neurons, astrocytes, immune cells, oligodendrocytes, and vascular [11] (Fig. 4A, see 

Methods). First, to identify the distances among the cell types in terms of the APA effect size, 

scMAPA estimated the effect size of 3,223 genes significantly (B-H p-val < 0.05) identified as 

APA genes across the five cell types (Fig. 4B). Based on these effect sizes, we performed the 

PCA analysis (Fig. 4C) and calculated Euclidean distance (S. Fig. 4A) between the cell types. 

While both the analyses support the previous finding that immune and neuron cells are most 

different in terms of the APA effect size [7], they further reveal that immune cells are most 

different from all the other cell types. Second, to identify the overall relationships between the 

APA regulation and the gene expression regulation, we correlated the APA effect sizes of all the 

identified genes with their expression level. The result shows that the APA effect sizes are not 

correlated with their expression level in all the cell types (e.g., Spearman’s ρ < 0.05 for all cell 

types, S. Fig. 4D-H), demonstrating that APA events are regulated independently of gene 

expression in the mouse brain.  
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Further, cell-type-specific APA genes (3ʹ-UTR shortening and lengthening genes) 

identified by scMAPA provide a systematic understanding of cellular status. Previous studies 

showed that APA is involved in regulating cell division status. For example, various types of 

dividing cells are associated with widespread 3ʹ-UTR shortening [17], [18]. Likewise, 

differentiated and senescent cells are associated with widespread 3ʹ-UTR lengthening [19], [20]. 

To systematically extend these findings that were made in cell line data [17], [19], [21] or 

heterogeneous tissue data [18], we ran scMAPA in the mouse data further to identify 438 

significant (B-H p-val < 0.05) cell-type-specific APA genes in neurons, 891 in immune, 374 in 

astrocyte, 422 in vascular, and 430 in oligos with some overlaps across the cell types (S. Fig. 

4B). A further division into 3ʹ-UTR shortening and lengthening genes in each cell type (Fig. 4D) 

showed that 3ʹ-UTR shortening and lengthening are significantly enriched in immune cells and 

neuron cells, respectively. As immune cells actively divide to dynamically regulate the immune 

system, the enriched 3ʹ-UTR shortening may contribute to the active division. In the same sense, 

we could find a biological explanation for why 3ʹ-UTR lengthening are enriched in neurons. 

While neurons do not divide once they are formed in the brain, our result suggests that the 3ʹ-

UTR lengthening can play a significant role in keeping neuron cells from further dividing. 

Together, by identifying cell-type-specific APA genes, scMAPA systematically links the cellular 

APA profile to dividing immune cells and differentiated neuron cells.  

 

scMAPA adjusts for undesired source of variance to uncover APA functions which would 

be invisible without the adjustment 

To show how scMAPA controls undesired source of variance in the data and why it is important, 

we analyzed the mouse brain data consisting of 5 cell types collected from 2 brain regions 
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(cortex and midbrain). Since some cell types were collected from multiple brain regions (Fig. 

4A, 5A), APA genes associated with a brain region could be mistakenly identified as cell-type-

specific APA genes, which would further confuse the study of cell-type-specific functions of 

APA genes. To see if scMAPA can remove such false positive APA genes, we set scMAPA to 

adjust for the brain region information (cortex and midbrain dorsal) (brain-region-adjusted 

scMAPA). Then, we compared the result from another scMAPA run that does not adjust for that 

information(brain-region-unadjusted model), separately. As the brain-region-adjusted scMAPA 

and the brain-region-unadjusted model identified 2,715 and 2,793 APA genes respectively (S. 

Table 6), 113 genes are not identified in the brain-region-adjusted scMAPA. Thus, these APA 

genes are expected to be related to the brain region  it was sampled from (cortex and midbrain) 

(Fig. 5B). To test if the 113 genes function specifically for the brain region, we tested if they 

express highly specifically in the brain region. To conduct this test comprehensively, we 

identified their human homolog genes in the Mouse Genomic Informatics (MGI) homology 

database and compared expression of the human homologs between cortex and other brain 

regions in the Genotype-Tissue Expression (GTEx) [22] (see Methods). The result shows that 

these APA genes are significantly up-regulated in brain cortex compared to other brain regions 

(p-value=5.8×10-7, Fig. 5C), suggesting that their functions are specific to brain cortex. Since 

GTEx did not collect the expression data for midbrain, we did not conduct this analysis for 

midbrain. This result suggests that scMAPA can successfully adjust for undesired source of 

variation and identify APA genes likely caused by differences between cell types.  

 To demonstrate why adjusting for undesired source of variation is critical for accurate 

downstream analysis, we further conducted IPA analysis on the 2,715 and 2,793 APA genes 

identified by the brain-region-adjusted scMAPA and the brain-region-unadjusted model 
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respectively (brain-region-adjusted and -unadjusted APA genes, respectively). Comparing the 

IPA enrichment between brain-region-adjusted and brain-region-unadjusted APA genes, we 

found considerable differences in important terms for brain study: among the 24 terms to which 

the brain-region-adjusted APA genes are uniquely and significantly (B-H p-value < 0.01) 

enriched, 7 terms are directly related to brain diseases (Fig. 5D). For example, two terms with 

the keyword “mental retardation” are significantly enriched (B-H p-value < 2.2×10-4) only for 

the brain-region-adjusted APA genes. On the other hand, among the 30 terms to which the brain-

region-unadjusted APA genes are uniquely and significantly enriched, no term refers to a brain 

disease (S. Fig. 5A). With potential roles of APA events in brain diseases[23], [24], this result 

suggests that adjusting for the variation from brain region  uncovers the APA genes that can play 

critical roles in the brain disease, which would be invisible without the adjustment.  

 

Supplemental material  

APA regulation on expression 

Previous studies have suggested that APA genes are more likely differentially expressed[1], [2], 

since either 3ʹ-UTR shortening removes microRNA (miRNA) binding sites on the 3ʹ-UTR and 

evades miRNA-mediated repression or 3ʹ-UTR lengthening adds miRNA binding sites and 

enhance miRNA-mediated repression. Our analysis reaffirms the previous observations in the 

scRNA-Seq data. 

scMAPA consensus with other methods 

In the PBMC data, scMAPA results still recover most of the results from the other methods. To 

assess the overlap, we identified significant APA genes across all the cell types in scMAPA and 



15 
 

scAPA. Since scDAPA and Sierra identify APA genes only between cell-type pairs, we 

combined the pairwise significant APA genes in each method separately. After controlling FDR 

on the combined APA genes, we called APA genes if they are significant in any of the pairwise 

identifications. While scMAPA identifies an intermediate number of APA genes between 

scDAPA and Sierra/scAPA (10k in S. Fig. 3C and 5k in S. Fig. 3D), more than half of the 

scMAPA’s findings are found in other methods (59.9% for 10k and 51.9% for 5k). While 

scMAPA solves an optimization problem based on the padding of 3ʹ biased reads (step 1 in Fig. 

1C), it successfully recovers most results from other methods, validating the use of scMAPA for 

comprehensive identification.  

Cell-type-specific APA genes in 10k PBMC data 

The global size differences in PBMC cells are different from in the mouse brain data in several 

aspects. First, 3'UTR lengthening occurs more than 3'UTR shortening in all the cell types (S. Fig. 

4E). Second, however, the number of 3'UTR shortening genes is significantly correlated with 

that of lengthening genes across the cell types (P-value=5×10-5, S. Fig. 4F). Since both trends are 

not shown in the mouse brain data, scMAPA elucidates the unique APA profiles of the PBMC 

data. 

Specificity of high expression in 113 brain-region-related APA genes for the brain cortex region 

In demonstrating the high expression of the 113 brain-region-related APA genes in the brain 

cortex region, we further investigated if the APA genes are not down-regulated in neither brain 

vs. non-brain samples (S. Fig. 5B) nor cortex vs. non-cortex brain samples (S. Fig. 5C). Also, 

this brain-region-specific expression pattern was not found for 2,715 APA genes identified by 

the brain-region-adjusted scMAPA (S. Fig. 5D, E, F, G). Together with our analysis on up-
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regulation (Fig. 5), the results suggest that the 133 APA genes function specific to the brain 

region. 

 

Discussion 

To identify APA genes in scRNA-seq data for complex tissue data, we developed scMAPA that 

addresses several limitations in existing methods using a combination of a computational 

optimization algorithm and a statistical model. First, while existing methods detect APA signals 

with assumptions on the shape of the input data, scMAPA does not rely on such assumptions by 

formulating this task in quadratic programming. By solving this quadratic programming for 

genes with different read coverage shapes across cell types, scMAPA outperforms existing 

methods in accurately and robustly identifying APA genes in various simulated (Fig. 2) and 

PBMC data (Fig. 3). Second, scMAPA identifies APA genes specific to each cell type in a 

statistically rigorous model. These cell-type-specific APA genes elucidates their connections to 

the cell division status of immune and neuron cells in the mouse brain data (Fig. 4). Third, 

scMAPA can control confounding factors. In the mouse brain data of five cell types collected 

from two brain regions, scMAPA can distinguish the 113 APA genes that are likely related to the 

brain regions. By removing the false positive APA genes from further analyses, scMAPA could 

clarify the functions of APA genes on brain diseases such as ‘mental retardation’ (Fig. 5). Lastly, 

we developed a novel simulation platform in which to assess statistical power of APA 

identification methods based on a common feature of APA genes, the high variation of APA long 

and short isoforms (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) across cell clusters.  
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When identifying the annotated pA sites, scMAPA makes point estimations of the pA 

sites. While other methods mainly produce interval estimates, point estimations are more directly 

relevant to further analyses than interval estimations, e.g., conducting omics data analyses and 

designing validation experiments. However, when point estimation methods are naively 

compared to interval estimation methods in terms of the distance to the annotated pA sites, point 

estimations produce generally disadvantageous results, because point estimation returns a single 

point while interval estimation returns two points (start and end of the interval) to measure the 

distance. For example, the interval estimations produce better results than the point estimations 

within both Sierra and scAPA (S. Fig. 3A, B). Even with this disadvantage of point estimation 

for comparison purposes, the point estimation of scMAPA outperforms the interval estimation 

results of Sierra and scAPA in identifying the annotated pA sites, showing a clear advantage of 

scMAPA (Fig. 3A, S. Fig. 3A, B).  

A limitation of this paper is that, although scMAPA can consider more than two pA sites 

(see Methods), our analysis focused on the use of two pA sites (most distal and most proximal) 

for the following reasons. First, some of the methods that compare with scMAPA consider only 

two pA sites, e.g. scAPA. For fair comparisons, we limited scMAPA to consider two pA sites. 

Second, we focused on this binary APA trend to make it easier to investigate across multiple cell 

types. In the future, we plan to consider more than two pA sites in complex tissues after 

characterizing the binary trend across multiple cell types. For example, after solving the 

quadratic programming with >2 pA sites and developing a multinomial logistic regression model 

with the identified pA sites in the mouse brain data, we can estimate the APA effect size for each 

use of the multiple pA sites.  
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scMAPA can be extended in the following directions in the future. First, the 

transformation step of scMAPA allows us to use other methods originally developed for bulk 

RNA-Seq data (e.g. APATrap [25], TAPAS [26]) to analyze scRNA-Seq data. Since the methods 

can identify APA genes in the full-length 3ʹ UTR signal of transcripts, scMAPA can employ 

such methods on the transformed scRNA-Seq data that represents the full-length 3ʹ UTR signal 

of transcripts. This extension can make those APA identification methods as reasonable 

alternatives since those methods are well established and studied in terms of sensitivity and 

specificity. Second, while existing methods developed for scRNA-Seq data are mostly designed 

for 3ʹbiased scRNA-Seq data (e.g. 10x), scMAPA can be used for the scRNA-Seq data that are 

not 3ʹbiased (e.g. Smart-seq2 [27]) simply by skipping the data transformation step, since the 

scRNA-Seq data already present the full-length 3ʹ-UTRs.  

Altogether, we developed scMAPA to identify APA genes in scRNA-Seq data of 

multiple cell types. With high sensitivity and robustness in addition to adjusting for undesired 

source of variations, scMAPA elucidates the cell-type-specific function of APA events, which is 

essential to shed novel insights into the functional roles of APA events in complex tissues. 

 

 

METHODS 

Processing data sets 

PBMC data. Aligned BAM files were downloaded from the 10X genomics repository 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). According to the data 

description of 10X, 1K, and 10K data were generated from the same materials. 5K data was 
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generated from different cells. PCR duplicates were removed using UMI-tools 1.0.0 with “--

method=unique --extract-umi-method=tag --umi-tag=UB --cell-tag=CB”. Cell clustering was 

performed using R package Seurat 3.1.4[28]. To further validate the number of the clusters, we 

examined the percentage of variance explained (between-group variance/total variance) against 

the different number of clusters in elbow plot analysis (S. Fig. 3A, B, C for 1k, 5k, and 10k data 

respectively). From the elbow plots, we can see that the number of clusters was set in an 

acceptable range of the explained variance (between the steepest increase and the flattening 

point), suggesting that Seurat’s method delineated an appropriate number of clusters in the 1k, 

5k, and 10k data. Especially, although 5x more cells in the 5k data did not proportionally 

increase the number of clusters from the 1k data, the defined clusters explain a very similar 

percentage of the variance (~16.25%), supporting the number of clusters in the 1k and 5k data 

again.  

 Another support comes when checking the dimension-reduced space (UMAP) of the data 

(S. Fig. 3D, E, F for 1k, 5k, and 10k data respectively), since distinct cell types are expected to 

be well separated on the UMAP. Since it is the case for the 1k, 5k, 10k data, we believe that the 

numbers of the defined clusters were set appropriately. Then, we filtered to keep cells with more 

than 1000 UMI counts and 500 genes expressed. Cells with more than 15% UMI counts from 

mitochondrial genes were filtered out. Then, raw data were normalized by regressing against 

UMI count, mitochondrial mapping percentage, and ribosome genes mapping percentage using 

SCTransform function. We ran PCA analysis and took the top 20 principal components as input 

to FindNeighbors function. Finally, FindClusters function was run with resolution set to 0.2 to 

identify cell communities. Cell types were annotated by matching the expression pattern of well-

known marker genes for PBMC [29]. 
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Mouse brain data. Aligned BAM file and clustering results of cortex and midbrain dorsal from 

two donors were downloaded from [11]. PCR duplicates were removed using UMI-tools[30] 

same parameters used for PBMC data. To keep consistent with the analysis performed by 

scAPA, we included only neurons, immune cells, astrocytes, oligos, and vascular cells in our 

analysis. Differential expression analysis was performed by FindAllMarkers function of Seurat 

package with min.pct set to 0.25 and all other parameters as default.  

Investigating sample-specific up-regulated genes in GTEx 

First, the mouse-human homology data was downloaded from the Vertebrate homology database 

in the Mouse Genome Informatics (MGI) (http://www.informatics.jax.org/homology.shtml) and 

used to find homologs in human. Then, we ranked GTEx samples based on the overlap between 

the upregulated genes and the homolog genes using a database that curates the up- and down-

regulated genes for each GTEx sample, Enrichr [31]. Enrichr evaluates the overlap by combining 

p-value and odds ratio (Combined Score in Enrichr).  We could not conduct this analysis for the 

midbrain dorsal region, since the GTEx did not collect data from the region. 

 

scMAPA algorithm 

Step 0. Split aligned reads by cell clusters. 

scMAPA takes aligned BAM files and user-provided clustering information (e.g. cell type) as a 

match table to split the whole BAM file into each cluster using pysam. Clustering information 

should include all the categorical variables that the user would like to consider in the modeling, 

but not only cell type. For example, when detecting APA genes in the mouse brain data, we used 

both brain region and cell type as covariate variables. After splitting, UMI-tools is used to 

http://www.informatics.jax.org/homology.shtml
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remove the PCR duplicates by grouping reads that sharing the same UMI. Further, scMAPA can 

identify false APA identifications due to internal priming of A-rich internal regions if more than 

7 consecutive adenines with up to 1 mismatch exists in 10 nt downstream of the predicted 

proximal PA site[14]. In the PBMC 10K data, we identified that 90 out of 3574 APA events are 

due to suspected internal priming according to this standard. 

Step 1. Pad reads along the 3'UTR after preprocessing. 

We transform aligned scRNA-Seq data that utilize 3ʹ selection and/or enrichment techniques in 

library construction (e.g. Drop-Seq, CEL-Seq, and 10x Genomics). A 3ʹ biased read assigned to 

the 3ʹUTR of a gene represents the most 3ʹ end part of the transcript. With this reasoning, we 

extend the 3ʹ biased read starting from the annotated 3'UTR start site to where the read ends 

(Step 1 in Fig. 1). After padding all the reads this way, we recalculate the read coverage on the 

3ʹUTRs using ‘bedtools genomecov’ in Bedtools package[32] for each gene. Since the result 

represents the full-length read coverage of the transcript in the 3ʹUTR, our novel padding step 

enables us to employ sensitive statistical approaches as follows.  

Step 2. Quantify 3'UTR long/short isoforms. 

For further quantification, we formulate an optimization problem to infer the proximal pA site. 

Since our transformation reveals the proximal pA site where the read coverage changes, the 

optimization problem is minimizing the difference between the accumulated density of the 

isoforms and the input RNA-Seq read coverage as follows.  

(𝑤𝑘𝐿
∗ , 𝑤𝑘𝑆

∗ , 𝑃𝑘
∗) = argmin

𝑤𝑘𝐿
∗ ,𝑤𝑘𝑆

∗ ≥0,1<𝑃𝑘<𝐿
|| 𝑅𝑘𝑖 − (𝑤𝑘𝐿𝐼𝑘𝐿 + 𝑤𝑘𝑆𝐼𝑘𝑃)||2

2  
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where 𝑤𝑘𝐿 and 𝑤𝑘𝑆 are the transcript abundances of long and short 3ʹ-UTR isoforms for cell 

cluster 𝑘, respectively. 𝑅𝑘𝑖 = [𝑅𝑘𝑖1, … , 𝑅𝑘𝑖𝑗, … , 𝑅𝑘𝑖𝐿]
𝑇
is the corresponding read coverage at 

single-nucleotide resolution normalized by total sequencing depth. L is the length of the longest 

3ʹ-UTR length from annotation, 𝑃𝑘 is the length of alternative proximal 3ʹ-UTR to be estimated, 

𝐼𝑘𝐿 is an indicator function with L times of 1, and𝐼𝑘𝑃 has 𝑃𝑘 times of 1 and 𝐿 − 𝑃𝑘 times of 0. We 

solve this equation using quadratic programming [18] as was done in DaPars2. We will describe 

how this is extended to identify genes with more than two pA sites at the end of this section.  

Step 3. estimate APA significance across cell clusters.  

To make sure only genes with strong APA signals among multiple cell types are identified, we 

first filter out genes in which only 1 PA site is detected in less than 3 cell types. Then, for each 

gene, we calculate the CPM for long and short isoforms separately and average over all cell 

types. Only genes with an average CPM larger than 10 for both long and short isoforms are kept. 

In addition to gene-wise filtering, we also apply cell-wise filtering for each passed gene to keep 

only cell types with at least 20 raw counts of reads in the model. For each gene, cell types with 

extremely low coverage (< 20) will not be used to estimate the APA status. 

To model the relationship between the long/short isoform identified above and the given cell 

types, we build logistic regression for each gene with log-odds of the event that transcript uses 

distal polyA site (having long isoform) as the outcome and cell types as predictors using 

weighted effect coding scheme. When scRNA-Seq data were collected from multiple samples or 

individuals, scMAPA can be easily extended to control the effect of unmatched confounding 

factors by adding them into the regression model: 
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ℓ = ln
𝑝

1 − 𝑝
= 𝛽0 + ∑ 𝛽𝑖 ∗ 𝐶𝑖

𝑛−1

𝑖

+ ∑ 𝛽𝑗 ∗ 𝑉𝑗

𝑚

𝑗

 

where 
𝑝

1−𝑝
 is the odds of the transcript having a long isoform. 𝛽𝑖 and 𝐶𝑖 denote the coefficients 

and the binary indicator of each cell type, respectively. 𝑛 is the number of cell types. Since one 

cell type needs to be chosen as a reference for model fitting, scMAPA fits the model twice to get 

the estimates of coefficients for all cell types. 𝑉𝑗 and 𝛽𝑗 denote the sample-specific binary 

confounding variables (e.g., clinical variable) and their coefficients, respectively. 𝑚 is the 

number of confounding factors.  

When there is no confounding factor, the likelihood ratio test (LRT) between cell type only 

model and null model is conducted to test the unadjusted effect of cell type, which is equivalent 

to the likelihood ratio chi-squared test of independence between long/short isoforms and cell 

types. With the existence of confounding variables, LRT between the full model and 

confounding variables only model is conducted to test the adjusted effect of cell type. P-values 

from all tests are further adjusted by the Benjamini–Hochberg (B-H) procedure to control the 

false-discovery rate (FDR) at 5%. In addition, to ensure there is a significant change in effect 

size, the odds ratio of each cell type against the grand mean of all included cell types is 

calculated. There should be at least one cell type whose odds ratio is greater than 0.25 for a gene 

to be called an APA gene. 

Currently, scMAPA assumes only 2 pA sites in the 3ʹ-UTRs. However, our logistic model for 

step 2 can be easily extended to detect >2 peaks if employing other quantifiers that can consider 

>2 pA sites. For example, when only 2 peaks are detected for a gene, a binary logistic regression 

model would be fitted. However, when more than 2 peaks are detected for a gene, a multinomial 
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logistic regression model would be fitted. To the best of our knowledge, since the only current 

tool that detects >2 peaks is scAPA, a multinomial logistic regression model is only compatible 

with the peak detection result of scAPA. LRT test is used to estimate the significance of APA 

among multiple peaks and cell types similarly.  

Identification of cluster-specific 3ʹ-UTR dynamics. 

For the genes where significant APA dynamics is detected, scMAPA further analyses which cell 

type significantly contributes to the APA in which direction within each gene. By using a 

weighted effect coding scheme, each coefficient in the logistic regression can be interpreted as a 

measurement of deviation from the grand mean of all cells. This grand mean is not the mean of 

all cell type means, rather it is the estimate of the proportion of long isoforms of all cells for each 

gene. So, the unbalanced cell population sizes, which are common in scRNA-Seq would not 

affect the accuracy of estimation.  

We use the following two criteria to determine the cluster-specific significant 3ʹ-UTR dynamics:  

First, given coefficients estimated from logistic regression, we use the Wald test to determine the 

p-value of each coefficient. P-values among all genes with significant APA of the same cell type 

are further adjusted by FDR. Then, we further selected genes whose APA degrees change greater 

than 2-fold. If the APA degree increases greater than 2-fold, the respective gene is considered as 

3ʹ-UTR lengthening. And, if the APA degree decreases less than 2-fold, the respective gene is 

considered as 3ʹ-UTR shortening. However, users can define a different cutoff value of fold 

change to call 3ʹ-UTR lengthening or shortening.  

Identification of genes of more than two pA sites. 
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scMAPA can be easily extended to detect more than two pA sites and subsequently identify the 

significant differential usage of them. To detect more than two pA sites, scMAPA employs a 

similar approach to DaPars as follows. Instead of optimizing the regression model with a fixed 

number of predictors (proximal and distal pA sites), the case with more than 2 pA sites across 𝑛 

cell types can be formulated as follows. 

[

r11 r12 ⋯ r1n

r21 r22 ⋯ r2n

⋮ ⋮ ⋯ ⋮
rm1 rm2 ⋯ rmn

] = [

1 1 ⋯ 1
0 1 ⋯ 1
⋮ ⋮ ⋯ ⋮
0 0 ⋯ 1

]

m×m

[

w11 ⋯ w1n

w21 ⋯ w21

⋮ ⋯ ⋮
wm1 ⋯ wmn

]

m×n

 

where m is the length of the longest 3ʹ-UTR of a transcript. wij is the estimated abundance of 

one possible 3ʹ-UTR i in cell type j. Then, detecting multiple PA sites and estimating the 

abundance can be optimized by a LASSO regularization, in which the following equation should 

be optimized. 

argmin
1

2
W

|| C − MW ||2
2 + λ‖W‖1 

While the number of non-zero wij indicates the number of pA sites for this gene, scMAPA will 

consider the genes with up to four estimated non-zero wij by default that can be further changed 

by the user.  While this would avoid overfitting, we expect the default value to allow us to 

capture most genes according to a recent study on the number of pA sites for genes[33].  

After PA sites detection, the binomial logistic regression could be extended to a multinomial 

logistic regression to identify differential PA site usage when more than 2 PA sites exist. If in 

total P PA sites are detected by PA site detection module, the differential PA sites identification 

could be modeled as following, 
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Prob(PAi = p) =
eβp ∙ Xi

∑ eβk ∙ Xi
P
k=1

 

where p is one of the P PA sites. Xi is a row vector of features of an observed transcript. βp is the 

coefficients associated with PA site 𝑝.  

 

Simulation 

First, we used Splatter[34], a widely known scRNA-Seq simulator, to simulate the cell-level 

count matrix, which acts as the base of synthetic data. Splatter was trained by unfiltered mouse 

brain data and set to generate count matrices containing 5000 genes and 3000 cells. The matrix 

then collapsed into 5 columns, representing the total count of 5 cell groups. We call this 5000 × 5 

matrix a cluster-level count matrix.  

From the analyses of PBMC and mouse brain data, we found that the standard deviation of PDUI 

(percentage of distal polyA site usage, which is equivalent to the proportion of long isoforms) of 

each gene could act as a classifier of APA gene and non-APA gene. Based on that, the standard 

deviation of PDUI for APA genes in synthetic data is estimated by calculating the mean of 

standard deviations of PDUI from APA genes detected by both scMAPA and scAPA from 

mouse brain data. Similarly, the standard deviation of PDUI for non-APA genes was estimated 

by calculating the mean of standard deviations of PDUI from genes identified as non-APA by 

both scMAPA and scAPA. With the estimated standard deviations, a PDUI matrix with the same 

size (5000 × 5) as the cluster-level count matrices was generated. Each row of the PDUI matrix 

has a standard deviation equal to either the estimated standard deviation for the APA gene or the 

non-APA gene. This is achieved by centering 5 randomly selected numbers from standard 



27 
 

normal distribution to 0. Then multiply the desired standard deviation to these centered numbers 

and add them to the desired mean. The mean of each row was randomly picked from 0.05 to 

0.95. Since the estimated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values are averaged to 0.127 and 0.009 for the APA and the 

non-APA genes respectively, we generated simulation data with 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 for APA genes in a 

range centered on 0.13 while fixing that for non-APAs at 0.009. The rows representing true APA 

genes were randomly selected. Then, each number in the cluster-level count matrix is divided 

into the count of long isoforms and the count of short isoforms by multiplying and PDUI matrix 

or (1-PDUI matrix), respectively. Finally, Pearson’s chi-squared test (scAPA), logistic regression 

model + LRT (scMAPA) could be applied to assess the performance of these three methods. For 

each repeat of simulation, PDUI matrix is regenerated but the cluster-level count matrix keeps 

the same for the sake of computational burden. Every simulation design was repeated 100 times 

to derive summarized statistics.  

To examine the impact of experimental design on statistical power to detect significant APA 

genes, we assess the performance of scMAPA and scAPA in the following aspects: 1) To test the 

impact of unbalanced cell populations, the proportion of 5 cell types in the synthetic cell-level 

count matrices were set to three scenarios with different distribution of cell-type populations: 

(20%, 20%, 20%, 20%, 20%), (30%, 17.5%, 17.5%, 17.5%, 17.5%), and (50%, 12.5%, 12.5%, 

12.5%, 12.5%). 2) To test the impact of the proportion of true APA genes, we set three levels of 

true APA proportions, 5%, 10%, and 20%. 3) To test the impact of the extent of APA dynamics, 

instead of using mean of standard deviations, we set the standard deviations of true APA genes 

in the simulated PDUI matrix to the 15 equally spaced sequence of numbers between the first 

quartile and the third quartile of standard deviations estimated from APA genes in mouse brain 

data. In total, there were 9 scenarios, corresponding to 9 combinations of factors 1) and 2). When 
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testing factor 3), we chose balanced cell type proportion (0.2, 0.2, 0.2, 0.2, 0.2) and 10% true 

APA genes.  

Assessing accuracy of PA site estimation 

To assess the PA site/ peak interval prediction accuracy, we used peak lists or PA site lists from 

scMAPA, scAPA, and Sierra on PBMC data. The estimation accuracy is measured by the 

percentage of the predicted peaks or PA sites overlapped with PA sites annotated in PolyASite 

2.0. Since it is meaningless to find the overlap between two-point estimates, we expanded the 

point position from the annotation database to an interval by manually adding a distance ranging 

from 10 bp to 150 bp in a 10 bp increment to both sides of the annotated PA sites. scMAPA 

gives a point estimate of PA site as predicted proximal PA site and Sierra gives two-point 

estimates as fit max position and max position. To make the comparison more comprehensive, 

we calculated the midpoint of peak interval as the pseudo point estimate of scAPA. The point 

estimates from these methods are considered as supported by the annotation database if the point 

position falls in the annotated interval (annotated PA site ± distance). For peak intervals 

estimated by scAPA and Sierra, as long as there is 1 bp overlap between the estimated interval 

and the annotated interval (either start or end of estimated interval falls in annotated PA site ± 

distance), the estimate would be considered as supported by annotation database. Then, the 

percentage supported by annotation is calculated as the number of PA sites or peak intervals 

supported by the annotation database divided by total peaks detected for each method.  

 

Running scDAPA, scAPA and Sierra 
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Sierra and scDAPA were run with default parameters. scAPA was run with default parameters 

and intronic regions omitted. The genes with a CPM of less than 10 were filtered out. We want to 

point out that scAPA employs chisq.test function in R to estimate the significance of dynamic 

PA sites usage among multiple clusters. This potentially makes the identification of scAPA much 

conservative than other tools in the multi-group setting since it does not allow any cell type to 

have 0 count, as R’s chisq.test would return NA as p-value if there is 0 presented in the count 

table. However, it is common to observe that a few cell types would not express certain genes in 

scRNA-Seq, especially when the whole cell population is split into more than 5 clusters (cell 

types), which is typical for complex biological systems.  

To compare scDAPA and Sierra with scAPA and scMAPA in multiple-cluster settings, since 

scDAPA and Sierra identify APA genes only between cell cluster pairs, we combined the 

pairwise significant APA genes in each method separately. After controlling FDR on the 

combined APA genes, we called APA genes if they are significant in any of the pairwise 

identifications. 

Controlling undesired source of variance in cell-type-specific identification of APA genes 

To compare the running modes, we first divided the mouse brain data into 10 cell groups by cell 

type and brain region (5 cell types × 2 brain regions). In each data, we quantified the APA 

isoforms using scMAPA in two running modes, referred to as brain-region- 

confounding/controlled in the main text. The brain-region-confounding model is formulated as  

𝐴𝑃𝐴_𝐼𝑠𝑜𝑓𝑜𝑟𝑚~𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒.  

And the brain-region-controlled model is formulated as  

𝐴𝑃𝐴_𝐼𝑠𝑜𝑓𝑜𝑟𝑚~𝑐𝑒𝑙𝑙_𝑡𝑦𝑝𝑒+brain_region.  
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Availability of supporting source code and requirements 

Project name: scMAPA 

Project home page: https://github.com/ybai3/scMAPA 

RRID: SCR_021822 

biotoolsID: biotools:scmapa 

Operating system: Platform independent  

Programming language: R 

License: GNU GPL 

An archival copy of the code and other supporting data are available via the GigaScience 

database GigaDB[35]. 

Abbreviations 

APA Alternative polyadenylation 

B-H Benjamini-Houchberg 

GTEx Genotype-Tissue Expression 

IPA Ingenuity Pathway Analysis 

MGI Mouse Genomic Informatics 

miRNA microRNA 

pA polyadenylation 

PBMC Peripheral Blood Monocellular Cells 

scRNA-Seq single-cell RNA sequencing 

𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 standard deviation of the proportions of the long and short isoforms across all cell 

types (see Methods) 

3’-UTR 3ʹ-untranslated region  

https://github.com/ybai3/scMAPA
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Figure 1. Motivation and schematic illustration of scMAPA. (A) The read density shape on the FLT3 3ʹ-

UTR in multiple cell types of 10k PBMC scRNA-Seq data. (B) The transformed read density shape on the FLT3 

3ʹ-UTR in multiple cell types of 10k PBMC scRNA-Seq data. The red arrow indicates the proximal polyA site 

predicted. (C) The read density shape on the GATA2 3ʹ-UTR in multiple cell types of 10k PBMC scRNA-Seq 

data. (D) The transformed read density shape on the GATA2 3ʹ-UTR in multiple cell types of 10k PBMC 

scRNA-Seq data. The red arrow indicates the proximal polyA site predicted. (E) In Step 0 and 1, bars in solid 

color represent 3ʹ biased scRNA-Seq reads and bars in light color indicate how the 3ʹ biased reads are padded 

from the 3ʹ start site to the end of the read to represent the full-length 3ʹ UTR of the transcript. In Step 2, the 

blue and green bars indicate the estimated isoforms in each cell type, where solid and light coloring mode 

indicate 3ʹ UTR long and short isoforms. In Step 3 and 4, the bars represent the estimated number of APA 

isoforms in each cell type. 
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Figure 2. Performance assessment on the statistical component of scMAPA and scAPA using simulated data. 

With fixed number of true APA events (500 out of 5000) and uniform distribution of cell cluster size (600 cells 

in each cell type) (A). Illustration of the simulation process. Genes identified as significant APA genes by both 

scMAPA and scAPA were considered as APA genes. Genes identified as non-significant APA genes by both 

methods were considered as non-APA genes. (B) Comparison of scMAPA vs. scAPA in terms of sensitivity. 

We varied the standard deviation (SD) of APA isoforms across clusters (SDisoprop) for 500 true APA genes 

(0.06 to 0.18) with the fixed SDisoprop value for 4,500 non-APA genes (0.009). (C) Comparison of scMAPA vs. 

scAPA in terms of specificity in the same scenario. (D) Comparison of scMAPA vs. scAPA in terms of 

sensitivity. We varied cell cluster size: (20%, 20%, 20%, 20%, 20%) for scenario a, (30%, 17.5%, 17.5%, 

17.5%, 17.5%) for b, and (50%, 12.5%, 12.5%, 12.5%, 12.5%) for c. 
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Figure 3. Performance assessment of scMAPA, scAPA, scDAPA, and Sierra using PBMC data. (A) The ratio 

of annotated pA sites identified by scMAPA vs. scAPA and Sierra on the PBMC 10k data. The identified pA 

sites were deemed annotated when they are within a range to any annotated pA sites while the range was set 

from 10 bp to 130 bp, respectively. We extracted the annotated pA sites from PolyASite 2.0. (B) The ratio of 

significant APA genes found in all three PBMC data (10k, 5k, and 1k) in blue bar and in any combination but 

all three in orange by scMAPA, scAPA, scDAPA, and Sierra (C) Box plots showing the proportion of the 

overlap between sample APA genes and total APA genes normalized to total APA genes (APA agreement 

ratio). The APA agreement ratio values were evaluated in various numbers of cell types sampled. (D) 

Significance of enrichment (blue bar) and number of overlaps (orange line) of 3,574 scMAPA APA genes on 

IPA Disease and Function terms with the keyword “blood” or “hematopoiesis”.  
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Figure 4. A novel module of scMAPA cell-type-specific APA identification on the mouse brain data. (A) tSNE 

plot showing the cell types of the mouse brain scRNA-Seq data. (B) Heatmap of the APA effect sizes estimated 

for each cell type, representing the coefficients in the scMAPA logistic regression model. (C) PCA plot showing 

how the cell types are similar or dissimilar in the APA effect size. PC1 and PC2 together account for 70.3% of 

the variation. (D) Bar plot showing the number of significant 3ʹ-UTR lengthening (red) and shortening (blue) 

identified in each cell type.   
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Figure 5. (A) tSNE plot showing the brain region of the mouse brain scRNA-Seq data. (B) Venn diagram 

showing the APA genes identified by the confounder-adjusted scMAPA and the confounder-unadjusted model. 

(C) Box plot showing significance of overlap between the 113 genes and the up-regulated genes in GTEx brain 

samples whether they are from cortex (red) or not (green). (D) Significance (B-H p-value) of IPA enrichment 

terms that are uniquely and significantly (B-H p-value<10-2) enriched to 2,793 confounder-adjusted scMAPA.  
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